

Facile synthesis of sulfurized MoO₃ nanostructures from industrial waste powder for energy storage application

<u>F. Ursino</u>^{1,2}, G. Mineo¹, A. Scandurra^{1,2}, Mario Scuderi³, Angelo Forestan⁴, Catya Alba⁴, R. Reitano¹, A. Terrasi^{1,2} and S. Mirabella^{1,2}

¹ Dipartimento di Fisica e Astronomia "Ettore Majorana", Università degli Studi di Catania, via S. Sofia 64, 95123 Catania, Italy.

² CNR-IMM, Università di Catania, via S. Sofia 64, 95123 Catania, Italy.

³ CNR-IMM, Sede Principale, Strada VIII, 95121 Catania, Italy.

⁴ R&D Spirit Srl-Soc. Unipersonale, Via dei Laghi 67, 36072 Vicenza, Italy.

The green transition required by climate change also involves the development of more environmentally friendly and efficient energy storage devices. The use of industrial waste to produce nanostructured functional materials is a crucial strategy for mitigating environmental issues. Industrial waste powder rich of Mo attract a lot of interest thanks to the catalytic properties of Mo-based oxides and sulphides. Here, we report a novel, low-cost synthesis consisting in a two-steps hydrothermal process to obtain sulfurized MoO₃ (MoS₂/MoO₃) nanostructures starting from Mo-based industrial waste powder. Scanning electron microscopy, Transmission electron microscopy, Raman spectroscopies, X-Ray Diffraction pattern and Rutherford backscattering spectrometry have been used for physicalchemical characterization. The first step concerns with the MoO₃ nanobelts (50-200 nm wide, 10 μm long) synthesis from a peroxo-molybdate solution, obtained by mixing Mobased starting powder with H_2O_2 . The morphology of MoO_3 nanobelts strongly depends on the hydrothermal bath pH. The MoO₃ nanostructures have been sulfurized into MoS₂/MoO₃ nanostructures (200 nm wide) by a second hydrothermal treatment and with the addiction of thiourea in solution. MoS_2/MoO_3 nanostructures were tested for energy storage applications using Cyclic Voltammograms (CV) and Galvanostatic Charge-Discharge (GCD) measurements within neutral electrolyte (1 M Na₂SO₄) without the addiction of binder. High specific capacitance values were recorded for these nanostructures, 218 F g⁻¹ and 120 F g⁻¹ respectively at 5 mV s⁻¹ and 0.5 A g⁻¹. These promising results open a way to large scale application of recycled materials for energy storage.

