

Sol-Gel elution synthesis of bismuth oxide thin film for high energy storage performance

<u>Giovanna Pellegrino¹</u>, Giacometta Mineo², Vincenzina Strano¹, Gianluca Marcellino³, Luca Pulvirenti³, Federico Ursino^{1,2}, Salvatore Mirabella^{1,2} and Guglielmo G. Condorelli³

¹ CNR-IMM, Università degli Studi di Catania, via S. Sofia 64, 95123 Catania, Italy. ² Dipartimento di Fisica e Astronomia "Ettore Majorana", Università degli Studi di Catania, via S. Sofia 64, 95123 Catania, Italy.³ Dipartimento di Scienze Chimiche, Università degli Studi di Catania, and INSTM UdR Catania, Viale Andrea Doria 6, I-95125 Catania, Italy

The need of achieving low-impact and low-cost functional materials through sustainable and efficient methodologies is one of the goals of the current research in the field of materials science and energy storage. In this study, a new facile route for obtaining battery-like Bi-based films, grown on titanium foils, is presented and discussed. Specifically, β -Bi₂O₃ layers were prepared from oxynitrate precursors via a simple sol-gel/elution process upon self-standing titanium foils, followed by annealing in forming gas $(H_2/N_2 5/95)$ at the temperature of 350°C. Through a comparative multi-technique approach, we demonstrate that the reducing H_2 environment is mandatory for the formation of a crystalline bismuth oxide edifice which consists of the tetragonal β -Bi₂O₃ phase with the crucial presence of Bi⁰. The technique allows to have a robust interfacial connection between the Bi-active layer and the conductor, thus avoiding other sample manipulation and guarantying stability. The article discusses the structural properties and the electrochemical characterization of the bivalent Bi-phase, to analyse the energy storage performance of the obtained material. The electrochemical characterization was conducted through Cyclic Voltammetry (CV) and Galvanostatic Charge Discharge (GCD) analyses thus revealing a peculiar double-redox battery behaviour with specific capacity (specific capacitance) of 195 mA*h/g (350 F/g) at 0.5 A/g, which highlights its energy storage potential.

